4 Seasons air inlet

Nice air flux

Reliable

Simple

Insulated

Robust

4 Seasons air inlet

The 4 Seasons air inlet is one of the first air inlets Tulderhof has created.

This air inlet has been installed in thousands of houses over the last 20 years. Meanwhile, this air inlet has proven it's reliability and has a simple and easy air flow.

How does it work?

The air flow is as following: when the valve opens, the air can only pass along the upper side. This way it steers quite straight into the house. After 10 to 15\% the valve opens underneath as well. The air is then deflected downwards, creating a nice rolling effect.

Material:

The frame is constructed out of the highest quality plywood. The valve has a fixed hinge point and is very well insulated with 15 mm insulation foam.

This foam also ensures a proper closing at the edges. Therefore the 4 Seasons air inlet is absolutely draught free.

Technical information

4 Seasons air inlet	$4 \mathrm{~S}-3000$	$4 \mathrm{~S}-4000$	$4 \mathrm{~S}-5000$
Type	2,100	2,800	3,600
$10 \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{h}$	3,000	4,000	5,000
$20 \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{h}$	3,700	4,900	6,200
$30 \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{h}$	1,410	1,860	2,370
Surface $-\mathrm{cm}^{2}$	600	700	800
Width $-\mathrm{mm}(X)$	330	360	390
Height $-\mathrm{mm}(Y)$	150	170	170
Depth $-\mathrm{mm}(Z)$			

* Other sizes available on request.

Attention!

X, Y and Z are available in every size. The hole in the wall should be 6 mm bigger.

Inlet per animal	$\mathrm{m}^{3} / \mathrm{h}$	cm^{2} by 10 Pa	$\mathrm{~cm}^{2}$ by 20 Pa
Species			
Broilers	$8-11$	$5.5-8.0$	$4.0-5.5$
Broilers: breeders	14	9.8	7.0
Layers	7	4.9	3.5
Rearing layers	5.5	3.8	2.8

To calculate the total net surface of the valves we use the following calculations:
> At an under pressure of 10 Pa you should multiply the total amount of $\mathrm{m} 3 / \mathrm{h}$ by 0.7
> At an under pressure of 20 Pa you should multiply the total amount of $\mathrm{m} 3 / \mathrm{h}$ by 0.5

