Twin air inlet

Option to transparant valve

2 hinge points

Mounting high or low

Well insulated

Very good air flow
Tailor made in many sizes

Advantages of the Twin air inlet:

The Twin air inlet is widely applicable for poultry, pigs and calves. The Twin has a hinge point which is adjustable. Either you can put the hinge point downwards (fig 1), this way air will only pass along the upper side of the valve. Or you can put the hinge point in the middle (fig 2) this way the air will go both, along the upper and downside of
the valve. The frame is constructed out of the highest quality plywood. The air inlet is well insulated with 15 mm insulation foam.

This foam also ensures a proper closing at the edges. Therefore the Twin air inlet is absolutely draught free.

Fig. 2

Technical information

Twin air inlet information			
Type	T-3000	T-4000	T-5000
$10 \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{h}$	2,100	2,800	3,600
$20 \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{h}$	3,000	4,000	5,000
$30 \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{h}$	3,700	4,900	6,200
Surface $-\mathrm{cm}^{2}$	1,410	1,860	2,370
Width $-\mathrm{mm}(X)$	600	700	800
Height $-\mathrm{mm} \mathrm{(Y)}$	320	350	370
Depth $-\mathrm{mm}(Z)$	170	170	220

Every Twin air inlet is of high quality plywood and available in many sizes.

The holes in the wall should be 6 mm bigger.
For concrete houses we provide tailor made frames.

Inlet per animal	$\mathrm{m}^{3} / \mathrm{h}$	cm^{2} at 10 Pa	$\mathrm{~cm}^{2}$ at 20 Pa
Species	$8-11$		
Broilers	14	$5.5-8.0$	$4.0-5.5$
Broilers (breeders)	7	9.8	7.0
Layers	5.5	4.9	3.5
Rearing layers	100	3.8	2.8
Porkers	150	69.9	50.0
Pregnant sows	250	104.9	75.0
White veal calves	380	174.8	125.0
Rosé veal calves		265.7	190.0

To calculate the total net surface of the valves we use the following calculations:
> At an under pressure of 10 Pa you should multiply the total amount of $\mathrm{m} 3 / \mathrm{h}$ by 0.7
> At an under pressure of 20 Pa you should multiply the total amount of $\mathrm{m}^{3} / \mathrm{h}$ by 0.5

